Descrição de Técnica para Reprodução de Gomas de Mascar para Análise de Marcas de Mordida em Odontologia Legal

Chewing Gum Reproduction Technique for Bitemark Analysis in Forensic Dentistry

Marta Regina Pinheiro Flores*; Hélion Leão Lino Juniorb; Ricardo Henrique Alves da Silva

*Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Programa de Pós-Graduação em Reabilitação Oral, SP, Brasil
bUniversidade Estadual de Londrina, Faculdade de Odontologia, PR, Brasil

E-mail: martaflores@usp.br

Recebido: 22 de agosto de 2013; Aceito: 08 de dezembro de 2013

1 Introduction

Forensic Dentistry is the science that correlates dental to legal principles, under the inspiration to clarify data interests to justice, including the human identification process1-4. One of possible acting fields for dental forensic experts is the analysis and study of patterns and injuries created by human bitemarks5,6. The scientific basis of these analyses consists in the human dentition individuality and the assumption of its being reproduced on different supports. The support can be animate, like animals or persons, or inanimate, such as objects, food and even chewing gum left at a crime scene5. This allows the recovery of valuable clues, like saliva samples for forensic DNA testing and/or blood test types, and collection of dental impressions7-9.

A material evidence only has probation value if correctly registered and preserved, assuring its custody chain. In this way, the study of chewing gum evidence makes the work of the expert more meticulous, due to its characteristics including the elasticity and easily-deforming, increasing evidence disturbance and consequently, its invalidation. In this way, the present study aims to describe a technique to duplicate chewing gum by using a vinyl polysiloxane and a silicone impression material.

1 Material and Methods

This technique requires a small plastic recipient with fitting, that permits its replacement; alginate (Avagel®; Dentsply Industry and Trade Ltd., Catanduva, Sao Paulo, Brazil); spatula; plastic bowl; disposable syringe; glass mixing slab; cement spatula number 24; vinyl polysiloxane (soft and catalyst paste) (Elite HD® Light Body; Zhermack, Badia Polesine, Rovigo, Italy) with dispenser; silicone material (soft and catalyst paste) (Perfil®; Vigodent Industry and Trade Ltd., Rio de Janeiro, Rio de Janeiro, Brazil); and impression syringe (Figure 1).
The plastic recipient should permit replacement for an accurate reproduction of the gum. The internal face should present retentions that can be made by the operator or become incorporated into the recipient. This detail is important to improve alginate retention. It is also important to mark the right position of replacement.

The chewing gum must be refrigerated at the time of its manipulation to prevent distortions (Figure 2a). First, the alginate is manipulated according to the manufacturer recommendations, and half of the plastic recipient is filled. A small amount of this material is reserved for inclusion with the disposable syringe.

The syringe containing alginate is used to mold the gum and then it is incorporated into the recipient with alginate previous placed. The gum is submersed by half (Figure 2b). After the cure of the material, another portion of alginate is manipulated. The proceeding of inclusion on the disposable syringe is repeated, by this time the other half of the recipient is filled.

The alginate in syringe is always the first material to come in contact with the chewing gum (Figure 2c). The recipient is then closed until the final settlement position. After the second cure, the recipient is opened (Figure 2d) and the gum is carefully removed (Figure 2e). It is recommended to use a triple air syringe for displacing chewing gum.
The pattern obtained of the anatomic mold of the chewing gum is then used for the reproduction of the elastomeric material that is going to be inserted (Figure 3a).

![Figure 3a: Elastomeric deposition by dispenser](image)

The recipient should be maintained closed until the material cure. After this, the model of the gum may need clippings to remove the elastomeric excess (Figures 3b and 3c).

![Figure 3b: Chewing gum replication after material cure; notice that the excess material must be removed](image)

![Figure 3c: Chewing gum replication using silicone (left side) and vinyl polysiloxane material (right side), and the original chewing gum (middle).](image)

3 Results and Discussion

If carefully analyzed, manipulated and preserved, chewing gum left at a crime scene, under favorable conditions could provide crucial information about suspects of a crime, as reported in the literature10-12. This proof may be the only material clue available to experts13. The compressible property of a chewing gum gives to this material ability to almost instantly record marks of a bite, behaving as an impression material14,15, faithfully reproducing marks when compared to other substrates, like food, providing a fast and secure way to identify an individual16. The surfaces commonly recorded are the oclusal back teeth17.

On the other hand, the same property that gives elasticity and compressibility to this material also increases the propensity of deformation, dehydration and decomposition14,15. This fact contributes to questionings about its validity in a trial, settling to expert proper collecting, manipulating and preserving methods aiming to decrease undesirable changes and increase the probation value5.

The greater number of bitemarks left in food dehydrates faster the product and distorts the mark14,15. Most perishable foods received by forensic analysis, including chewing gum, offer insufficient information to form some confined conclusions about its authorship5. Even when the analysis of tooth prints is not possible, oftentimes they give sufficient samples to genetic profiling analyses. Saliva samples, blood (in exceptional cases) and even semen can be recovered17.

Chewing gum suffers less dehydration and distortion when conserved in a zip lock plastic bag18,19. Deterioration is retarded when conserved in refrigerator, even over an year, without compromising its dimensions, at a temperature of -10º to 4 ºC18,19. When more than one piece of evidence is collected and placed in the same wax recipient, these must be separated by bubble wrap18,19. Changes of temperature and pressure of collected sample recipient also contribute to its distortion20.

Also in this analysis, experts often need to interpose the dental arches on the material proof for the comparison of their characteristics. This factor confirms the need to develop techniques that allow a faithful reproduction of such proof, without damaging or compromising the original material20. The glucose present in chewing gum is a factor that could make the blood type exam impracticable by the saliva sample, due to substances inhibition of the blood group substances21.

Regardless of the material used for the chewing gum reproduction (vinyl polysiloxane or silicone), both resulted in reliable copies. Despite initial fidelity reproduction, silicone material releases late by-products that contribute to dimensional changes. For this reason, the choice in using a material lies on vinyl polysiloxane22. At the principle, two materials were used for this reproduction in order to establish which of them provides greater malleability in interposition among dental plaster models. Although vinyl polysiloxane exhibits higher elasticity modulus than the silicone material22, both materials expressed equal flexibility, perhaps by the silicone material thickness, which creates an indistinguishable clinic elasticity.

The dispenser for silicone has many advantages regarding the manual manipulation and application with disposable syringe, such as minimize the error handling and decrease the air bubbles in the mixture, thereby increasing the fidelity of the result22. Accordingly, vinyl polysiloxane has a higher dimensional stability than the silicone material, and together with dispenser, can be the one of choice for chewing gum reproduction. Finally, it is also worth mentioning that the saliva sample collected from the chewing gum to laboratory exams must be held, whenever possible, previously to its
manipulation.

The use of three-dimensional laser scanner to digitalize a chewing gum, including its use in the prototyping for reproducing the sample can be used and demonstrates to be a reliably reproduction method. Although this technique represents an easy and fast execution method, the process of prototyping demands time, as well as the need for equipment, digitalization and handling. This factor could make this technique impracticable, mainly considering its unenforceable implementation and maintenance in most of forensic institutes. Therefore, the description of a simple, quick, effective and cheap method, demonstrates more viability in forensic practice.

4 Conclusion

This adapted technique demonstrates to be an easy executing method for duplicate chewing gum, ensuring the preservation of the real evidence, providing a reliable reproduction of the questioned material, and enabling forensic dental experts to have a meticulous and accuracy analysis of chewing gum, when emerging as a relevant element of expert analysis.

References

10. Asen DP. If your chewing gum loses its flavor, don’t spit it out at a murder scene. AAFS 1998;132.