Influence of Different Time Intervals among the in-Office Bleaching Sessions on the Tooth Enamel Mass Variation

Abstract

This study evaluated the effect of different time intervals between tooth bleaching sessions on the variation of tooth enamel mass, using a 35% hydrogen peroxide gel. Twenty bovine incisor teeth were collected and cross-sectioned twice, leaving only the middle coronal portion. The dentin layer was removed, leaving only the buccal dental enamel. The samples were randomly divided into 2 groups (n = 10): G1 (with a 7-day time interval between each bleaching session), and G2 (with a 2-day time interval between each bleaching session). Three bleaching sessions were performed for each group. Each specimen’s mass was measured using an electronic analytical scale, first at the beginning of the study. On the other hand, G1 presented an increase in the mass values at the end of the third session, and these intragroup differences were statistically significant (p < 0.001). It was concluded that bleaching treatment with 7-day intervals between sessions leads to no tooth enamel mass loss, whereas the reduced 2-day time interval between sessions caused a significant tooth enamel mass loss.

Keywords: Tooth. Tooth Bleaching. Tooth Enamel.

1 Introduction

Nowadays and along of recent decades, aesthetics has become increasingly important in dentistry, based on the fact that many people find themselves unsatisfied with their smile, and wish to improve it\(^1\). The smile appearance associated to the teeth color, is one of the main concerns of such patients, and it leads to a huge demand for bleaching treatments, once it is relatively fast, and also considered one of the most conservative oral aesthetic procedures\(^2\).

Hydrogen peroxide is the most widely used agent for tooth whitening. It can be found in high concentrations (35-40%), which is recommended for in-office tooth bleaching, or in low concentrations (5% to 10%) for at-home tooth bleaching under professional supervision\(^3\,\^4\). Modifications in tooth bleaching protocols, intending to optimize time by making the bleaching gel to work faster on the tooth surface, can result in damage to the enamel structure, such as resulting in erosion and / or porosity, changes in mineral content, as well as affect surface microhardness\(^5\,\^9\), and such damages may be related to agent composition, concentration, pH values and different application techniques\(^10\).

Zimmer et al.\(^11\) verified the erosion of the dental enamel weighing the enamel mass. Another method for evaluating dental mass loss is the 3D non-contact profilometry, which

DOI: http://dx.doi.org/10.17921/2447-8938.2019v21n4p342-7
is valid for evaluation of superficial loss of the substrate, however, it does not provide any information of possible mineral loss in the underlying layers. Therefore, it is advisable to determine the enamel mass loss in bleaching studies by weighing the specimens, instead of using profilometry tool, once, due to the low molecular weight of the peroxides, their diffusion within the underlying layers of the enamel, to break the chromatogenic macromolecules, is fundamental for the bleaching mechanism9,10.

A study of 2015, evaluated the effect of decreasing interval’s time between clinical bleaching sessions on the risk and intensity of tooth sensitivity, using 35% hydrogen peroxide (35% HP), and concluded that reduction of the interval from seven to two days had similar teeth whitening response (35% HP), and concluded that reduction of the interval between clinical bleaching sessions to 2 days might cause a decrease in microhardness and augment in roughness13. Nonetheless, an in vitro study of 2018 found that the reduction in time interval between sessions to 2 days might cause a decrease in microhardness and augment in roughness13.

The available literature on the possible deleterious effects on enamel structure when clinical sessions are performed in a shorter interval of time are still scarce13,15. Thus, it is necessary to elucidate if changing treatment duration, by reducing the interval between bleaching sessions, any damage can be observed, such as a pronounced enamel loss, even in presence of saliva (SA) that contains remineralizing agents. Therefore, the purpose of this study is to evaluate the influence of different time intervals (7 and 2 days) between clinical bleaching sessions on variation of tooth enamel mass.

2 Material and Methods

2.1 Ethical aspects, sample collecting and characterization

This study was subjected to the local Research Ethics Committee on Animals Use, and received an approval certification (nº 1286260317). As template for the experiments, twenty sound incisor bovine teeth from the \textit{Bos taurus indicus} species were used. The teeth included in the research had 24 months average age, and all were erupted in the oral cavity, with a healthy crown and complete root formation.

After extraction, disinfection was made in 0.1% thymol solution for one week. The teeth were then stored in distilled water, renewed weekly, under refrigeration (4 °C) until the time of the experiment, not exceeding 6 months of storage. Following, the teeth were analyzed under a stereoscopic microscope (40X) to detect the presence of cracks and / or fractures, which, if present, would eliminate the specimen from the study.

2.2 Samples conditioning

The teeth crowns were subjected to two transversal cuts (Figure 1). The first cut was made at a distance of 15 mm, measured with a digital caliper (DIN 862; Mitutoyo, São Paulo, SP, Brazil) from the cementum-enamel junction and parallel to the incisal border. The second cut was performed at 5 mm from the cementum-enamel junction, thus obtaining a 10 mm tooth samples from the middle of the tooth crown portion. Thereafter, a longitudinal section in the mesio-distal direction was performed, in order to separate the buccal and lingual dental crown portions. The lingual portion and the root of each crown were discarded, and the buccal dentin layer was removed with the support of a conical truncated diamond burs #4138 (KG Sorensen - Cotia, SP, Brazil) at high speed and under constant cooling, leaving only the buccal dental enamel surface. Then, all the samples were washed in an ultrasonic bath in distilled water for 20 minutes16. Each enamel fragment was individually embedded in condensation silicone in circular polyvinyl chloride (PVC) matrices, measuring 20 mm in diameter to receive the bleaching treatment. The specimens were randomly divided into 2 experimental groups (n = 10) (Table 1).

Figure 1 - A) Bovine Incisors of the species Bos Taurus indicus, markings of the dental crown performed at a distance of 15 mm and another at 5 mm of the amelocementary junction, resulting in fragments of the middle portion of the crown with an average height of 10 mm. B) Direction transverse sections mesiodistal of the dental crowns. C) Removal of dentin with diamond Tip nº4138 in high rotation and under refrigeration. D) Dental fragment after dentin layer removal.

Source: The authors

Table 1- Division of experimental groups according to the intervention performed

<table>
<thead>
<tr>
<th>Group</th>
<th>Interval between the Dental Bleaching Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>7 days</td>
</tr>
<tr>
<td>G2</td>
<td>2 days</td>
</tr>
</tbody>
</table>

Source: Research data.

2.3 Tooth bleaching treatment

The bleaching treatment was performed by using a 35% hydrogen peroxide (35%HP) (Whiteness HP Blue, FGM, Joinville, SC, Brazil, Table 2), applied in a 1 mm thickness layer of bleaching gel, measured by aid of a millimeter periodontal probe on the surface of the sample. The bleaching gel was applied at the sample’s surface and left on for 40 minutes in a single session (Figure 2). Along the bleaching session, an exploratory probe was used to mix the gel every 10 minutes, in order to eliminate possible bubbles resulting from the HP
reaction, according to the manufacturer’s recommendations. The specimens remained in the biological chamber (37 °C) during the bleaching session. After that, the gel was washed out from the enamel surface by an air/ distilled water spray (1 min), at a distance of approximately 5 cm from the sample’s surface.

Figure 2. A) Inclusion of dental fragments in condensation silicone. B) Placement of the bleaching gel on the dental fragments in 1 mm thickness. C) After bleaching, the fragments were washed with distilled water in a triple syringe for 1 minute. D) Drying of the fragment for 2 minutes (time stipulated after pilot study) with air free of moisture and dirt. E) High precision balance used in the study. F) Measurement of the mass of the fragments with precision of 0.0001 grams.

Table 2- Description of the materials used

<table>
<thead>
<tr>
<th>Materials Manufacture</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleaching gel - Whiteness HP Blue FGM – Joinville, SC, Brazil</td>
<td>35% hydrogen peroxide, thickeners, violet inert pigment, neutralizing agents, calcium gluconate, glycol and water.</td>
</tr>
<tr>
<td>Artificial saliva A Fórmula – Compounding Pharmacy, Belém, PA, Brazil</td>
<td>2190 mg of sodium bicarbonate, 125 mg of magnesium chloride, 820 mg of potassium chloride, 10 mg of Nipagin, 24 mg of Sorbitol, 1270 mg of potassium phosphate, 441 mg of calcium chloride, 4.5 mg of sodium fluoride, 100 mg of Nipasol, 8 mg of Carboxymethylcellulose 3000 mL of Distilled water (pH = 7)</td>
</tr>
</tbody>
</table>

2.4 Enamel mass measurement

After bleaching, the specimens were submitted to 60 seconds washing and dried with a Philco Titanium Travel dryer (Philco – Joinville, SC, Brazil) for 2 minutes, time enough to dry it all, and do not cause any change in the weight of the specimens, also considering that this equipment releases dirt-free air. The specimens were weighed at the following intervals: T0 - before the beginning of the bleaching treatment, T1 - at the end of the first bleaching session, T2 - at the end of the second bleaching session and T3 - at the end of the third and last bleaching session. For that, an electronic analytical scale (Quimis-AS 210, Diadema-SP-Brazil) was used, with a precision of 0.0001, which provides the weight values in grams. After weighing, the specimens returned to their respective containers and were kept in a biological chamber (37 °C), with the storage media renewed daily, until the next application of the bleaching gel. The bleaching procedure was repeated using the same protocol, until completion of three exposure sessions to HP35.

2.5 Statistical analysis

The data obtained were subjected to statistical analysis by using BioEstat® software, adopting a 5% significance level. The samples had normal distribution (Shapiro-Wilk test) and the ANOVA test for the related samples was applied.

3 Results and Discussion

The means for enamel mass variation (and standard deviation) for each bleaching treatment session are shown in Table 3. The descriptive data analysis showed the highest mean value in G2 (0.1653g), and the lowest mean value in G1 (0.1615g), for T1 and T0, respectively. The ANOVA test indicated a significant statistical difference (p<0.0001) among all intragroup comparisons. For G1, which had 7-day interval between sessions, the values for enamel mass were increased up to the end of the second session of the bleaching treatment (T2 - 0.1629g). A decrease on enamel mass was observed after the third bleaching session (T3 - 0.1624g), but the mass value was still higher than in T0. Thus, it characterize an increase in the group mass mean value. For G2, which had a 2-day...
interval between each bleaching sessions, a slight increase in dental enamel mass was observed, when comparing it at the beginning of the experiment (T0 - 0.1650g), to the mean value at the end of the first bleaching session (T1 - 0.1653g). However, after that, the values kept decreasing up to the end of the 3rd bleaching session (T3 - 1643g).

Table 3 - Difference between the mean and standard deviation of the mass variation in G1 and G2, in grams (g), of the dental enamel in T0- before bleaching, T1 – first bleaching session, T2 – second session of dental bleaching and T3 – third session of dental bleaching. Anova for related samples, adopting an α level of significance (P ≤ 0.05).

<table>
<thead>
<tr>
<th>Mean (standard deviation)</th>
<th>G1 – Seven-day interval among the session</th>
<th>G2 – Two-day interval among the sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>0.1616a (±)0.01</td>
<td>0.1650A (±)0.03</td>
</tr>
<tr>
<td>T1</td>
<td>0.1619b (±)0.02</td>
<td>0.1653B (±)0.03</td>
</tr>
<tr>
<td>T2</td>
<td>0.1629c (±)0.02</td>
<td>0.1645C (±)0.03</td>
</tr>
<tr>
<td>T3</td>
<td>0.1624d (±)0.02</td>
<td>0.1643D (±)0.03</td>
</tr>
</tbody>
</table>

p<0.0001 Distinct letters indicate intra statistical difference.

Source: Search data.

The bleaching treatment with 35% hydrogen peroxide associated with calcium, was able to provoke variation in the enamel mass by changes on the enamel structure, in both G1 and G2 groups, but in different ways, though. The results in G1 demonstrated an enamel mass increase at the end of bleaching therapy, opposite behavior observed in G2, where at the end of the treatment had enamel mass loss.

Some studies have evaluated the weight of dental enamel mass through the erosive potential of some liquids11,17,18. However, the present study is the first to evaluate through this method the mass loss of dental enamel under bleaching therapy for in office protocol. A study that also used a 35% hydrogen peroxide, demonstrated that HP35 concentration diffuses more rapidly through hard dental tissues than at the lower concentrations, thus, altering the structural and biochemical dental tissue properties19.

Oliveira and collaborators evaluated the properties of Knop microhardness and roughness (Ra) after bleaching protocol using a 2-day interval between the sessions. Both properties had negative changes, drawing the attention to the large increase of roughness which directly interferes in the vitreous aspect of the enamel. The authors stated that the lower the saliva-enamel contact time between sessions (2 days), the lower the protective effect, which was visualized in the group with a 7-day interval13.

Another factor that may influence the surface characteristics of dental tissue is the acid pH, still found in some bleaching gels, in order to ensure the stability of hydrogen peroxide20. The acid pH can change the dental superficial structure, resulting in greater surface roughness and increase the substrate porosity, which can cause points of tissue erosion31. However, in the current study the gel had an alkaline pH, which may explain why there was no mass loss in G1, and perhaps preventing a greater loss in G2.

On the other hand, some studies have verified the occurrence of less roughness on dental enamel after bleaching treatment, that gave to the substrate a smoother surface, comparing to those ones which had not been exposed to peroxides22-24. In this sense, a study using FT-IR spectroscopy found that a solution of 30%HP caused severe morphological changes, such as dental enamel dissolution and significant calcium and phosphorus loss21. It is suggested, based on results that most superficial layer may have been lost, giving rise to a flatter underlying layer, a fact that may possibly explain the decrease of the final mass in G2. Thus, the dental enamel did not return to the baseline levels, after the adverse effects caused to its surface, probably due to reduced time in contact with saliva.

Studies have confirmed that calcium, phosphate, and fluorides present in human saliva have restorative effects on enamel, promoting the enamel remineralization when the teeth keeps contact with those compounds in the natural saliva26,25,26. Thus, the enamel mass increase observed in G1, in this study, may be explained by the saliva ability to replace the calcium and phosphate ions lost during a possible demineralization process caused by hydrogen peroxide.

Salomäo et al.22 evaluated the susceptibility to demineralization of bleached dental enamel subjected to different fluoride application regimes and showed that the use of hydrogen peroxide and carbamide peroxide (CP), both at 35%, should be associated with a daily enamel fluoridation, otherwise, the in-office dental bleaching turn the tooth enamel more susceptible to demineralization. Therefore, the presence of calcium and/or fluoride in the bleaching gel composition, has the purpose of reducing the possible deleterious effects caused by high concentrated dental bleaching gels, in order to increase the incorporation of minerals into the dental enamel in an attempt to reduce adverse effects to the hydroxyapatite crystals27,28.

Heshmat et al.29 comparing calcium phosphate to natural saliva and their effect on the hardness of bleached enamel, found out that both, the remineralizing agent (calcium phosphate) and the natural saliva were able to significantly increase the enamel microhardness, reduced during HP bleaching. Both calcium incorporated into the bleaching gel and saliva were present in this study.

Still corroborating this finding, another study from 2014, evaluated the effect of two HP35 bleaching agents, without and with calcium associated to treatment with acidulated or neutral fluoride. They demonstrated that the acidulated
fluoride, combined with HP35 without calcium, caused a significant decrease in microhardness, whereas neutral fluoride associated to HP35 and calcium did not change the enamel microhardness25. Soon the incorporation of chemical components with remineralizing action becomes essential to avoid greater adverse effects to the dental enamel.

In addition, it is important to emphasize that in the oral cavity there are still other factors that can influence mass loss, such as the diet and dental brushing with abrasive toothpaste29. One study has shown that daily ingestion of some drinks, such as soda, is potentially more harmful to tooth enamel than the periodic application of peroxide bleaching agents41. Moreover, it was speculated that the enamel loss observed in this study is not clinically relevant when compared to the enamel periodically exposed to acidic beverages.

Considering the above, and the limitation of this in vitro study, it was observed that the dental bleaching with reduced time between the sessions, caused damage to the dental enamel, demonstrated by decrease of the mean value for dental mass in G2. Therefore, it is reasonable to infer that even with the fact that variation in the time interval between sessions does not cause or increase tooth sensitivity12, it can cause dental enamel damage that may not be reversible by the action of saliva and the addition of calcium into the bleaching gel13.

4 Conclusion

The present study concludes that bleaching treatment with 7-day intervals between sessions leads to no tooth enamel mass loss, whereas the reduced 2-day time interval between sessions caused a significant tooth enamel mass loss.

Acknowledgements

The authors would like to thank CAPES for incentive to the study.

References

20. Xu B, Li Q, Wang Y. Effects of pH values of hydrogen

