Impacts in the Respiratory Mechanics of the Ventilator Hyperinsuflation in the Flow Bias Concept: a Narrative Review

Jéssica dos Santos Pereira da Rosa Gonçalves; Walkiria Shimoya-Bittencourt; Viviane Martins Santos; Michel Belmonte

Abstract

Patients who require invasive ventilatory support are subject to the deleterious effects of this, mainly ventilator-associated pneumonia (VAP). The physiotherapist, a member of the multiprofessional team, assists the patient with the purpose of promoting the recovery and preservation of the functionality, being able to minimize / avoid secondary complications. This study aims to identify the repercussions of mechanical ventilation hyperinsuflation (MVH) in the flow bias concept in respiratory mechanics. This study is a narrative review. MVH is an important resource commonly used in clinical practice that involves the manipulation of mechanical ventilator configurations to provide larger pulmonary volumes, and the generated airflow gradient may play a relevant role in mucus transport, with the concept of flow bias the main factor responsible for its direction. For the mobilization of the mucus towards the cephalic direction to occur, there must be a predominant expiratory flow, guaranteeing the peak ratio of expiratory flow / inspiratory flow peak (EFP / IFP) greater than 1.11. Maintenance of mechanical ventilation assures the patient to maintain the positive end-expiratory pressure (PEEP) and the oxygen inspired fraction, avoiding the deleterious effects of the mechanical ventilator disconnection. MVH is able to improve lung compliance without, however, increasing airway resistance. MVH in the cephalic flow bias concept is effective for the mucus mobilization in the central direction, being able to improve pulmonary compliance and peripheral oxygen saturation.

Keywords: Respiration, Artificial. Intensive Care Units. Physical Therapy Department, Hospital.

1 Introduction

Patients hospitalized in intensive care units (ICU) require, in their majority, invasive ventilatory support and, thus, are subject not only to the benefits of the institution of this support, such as the gas exchange maintenance and reduction of respiratory work, but also to the deleterious effects associated with it, such as the transport mechanism involvement, the mucociliary depuration and cough ineffectivity.

The application of positive pressure in the lungs, by means of a prosthesis, can generate systemic repercussions and, as a result of these prolong the hospitalization time, as well as increase the morbidity-mortality. Just as the mechanical ventilation, the immobility imposed on the patient for sedation and generalized muscle weakness contributes to the retention of secretions in the airways, resulting in partial or total obstruction, with consequent alveolar hypoventilation, development of atelectasis, hypoxemia and increased respiratory work. The anesthetics/sedatives often used in these conditions also lead to hypoventilation and hypoxemia, changing the pulmonary compliance, thereby inhibiting the physiological mechanism of cough, favoring the...
Impacts in the Respiratory Mechanics of the Ventilator Hyperinsufflation in the Flow Bias Concept: a Narrative Review

Development of micro-organisms in these non-ventilated areas and resulting in pneumonia associated with mechanical ventilation (VAP)\cite{13,14}. VAP is one of the main factors that contribute to the increase of mortality, duration of ICU stay, duration of hospitalization and costs related to health\cite{10,15}. The estimate of mortality attributed to this infection varies in different studies, but approximately 33% of patients with VAP die as a direct result of this, being translated into the prolongation of hospitalization for around 12 days and in increased costs around $40,000 per episode\cite{16}.

Among the complications, respiratory dysfunction is an important disease in ICU. Physiotherapy operates with the objective of promoting the pervious airways management, retain or recruit lung volumes, optimize oxygenation and prevent secondary respiratory complications\cite{17,18}. The hyperinflation technique is employed to treat the retention of secretions, reversal of atelectasis, optimize the pulmonary oxygenation, and has been routinely used by physiotherapists from the beginning of years 1970\cite{19,20}. The manual hyperinflation uses the resuscitation balloon and was described for the first time in the decade of 1960, while the hyperinflation with mechanical ventilator (HVM) is by comparison a relatively new technique and was first described in 2002, and again in 2006\cite{21,22}.

Therefore, the objective of this study is to identify the MVH repercussions in the cephalic flow bias concept on respiratory mechanics.

2 Development

2.1 Methodology

The present study is a narrative review on hyperinflation with mechanical ventilator in the cephalic flow bias concept and its impacts/effectiveness. The search for articles was performed in electronic databases Medline, Bireme, Lilacs, SciELO, PubMed and PEDro, covering both Portuguese and English languages and using the following descriptors: “Intensive Care Unit”, “Flow Bias”, “Static Complacency”, “Airway Resistance”, “Mechanical Hyperinflation” and “Secondary Pulmonary Complications”. Through the search procedure 84 publications were identified, initially, (in Portuguese language and English 64) potentially eligible for inclusion in this review.

The references that met the inclusion criteria were evaluated, regardless of the journal, namely: (a) sample should include patient belonging to the intensive therapy unit mechanically ventilated; (b) use of the HVM and pulmonary complications; (c) national/international data collection; (d) article/book of original research with humans - including review articles; (e) approval of the corresponding relevant ethics committee - for those who need them. Theses, Dissertations and Monographs are excluded, since the implementation of a systematic search of the same is impossible logistically.

2.2 Discussion

According to Dennis et al.\cite{24} the physiotherapeutic intervention in the ICU is based on clinical reasoning after a complete and systematic evaluation is an integral component of the support for the management of these patients, boasting wide diversity of practices/techniques. However, currently in agreement with Dias et al.\cite{9}, Cerqueira et al.\cite{25} and Sricharoenchai et al.\cite{26} it has been debated extensively about the safety of the procedures application.

Since the decade of 1980, however, evidences emerged that the transport of secretions in the airways is influenced not only by the expiratory flow, but also by the relationship established between the inspiratory and expiratory flows, i.e., by the flow bias\cite{27,28}, and may change the layer of secretion covering the airways. In normal conditions, the diameter of the flexible airways increases during inspiration and decreases during expiration. This dynamic airways during the respiratory cycle causes acceleration of the expiratory air flow in relation to generating inspiratory flow, therefore, a cephalic flow bias, i.e., from distal to proximal direction\cite{29}.

HVM involves the manipulation of the mechanical ventilator settings to provide higher lung volumes. However, during mechanical ventilation, the air flows can play an important role in the transport of mucus and the concept of flow cephalic bias consisting of the expiratory flow acceleration in relation to the inspiratory flow, in virtue of the airway compression during expiration, which assists in the mucus displacement in the direction of the trachea\cite{28,29,30}.

The series of studies conducted in the decade of 1980 identified as critical threshold for the flow bias, the ratio between the expiratory flow (PEF) and the inspiratory flow peak (PFI) (ratio PEF/PFI) equal to 1.11. Being the ration PEF/PFI greater than 1.11 determines the secretion displacement toward the mouth (distal to proximal) and, less than 1.11 determines the secretion displacement toward inside the lungs (proximal to distal). This threshold can still be interpreted in another way, i.e., the mucus displacement occurs when one of the works of the flow achieves at least a value 10% higher than the other, and the direction of travel shall be determined by the flow of greater value or a difference of PEF - PFI ≥ 17 L/min\cite{27,31}. And according to Thomas\cite{32}, in addition to the latter, there is also the reason PFI/PEF ≤ 0.9 and PEF ≥ 40 L/min.

HVM in the cephalic bias concept consists of increasing the current volume (VT) in the proportions of 10 to 20ml/kg based on the calculation of the weight predicted until the VT target or the limit of 40 cmH\textsubscript{2}O of prolonged P\textsubscript{peak}, inspiratory time (Tinsp), constant flow, respiratory frequency (RF) of 6 - 8, FiO2 and unchanged PEEP\cite{12,20,27,30,32}. The goal is to generate the as high as possible PEF (by means of the adjustment of high current volume)\cite{12,30} and smaller PFI (through the increase of inspiratory time and the use of the square flow wave)\cite{12,30}.

Knowing only the respiratory system mechanics does not guarantee the safety of the technique, making it necessary...
the knowledge of the hemodynamic impacts of the technique used. Thus, some authors who studied HVM concluded that it produces no significant hemodynamic changes22-33. Savian, et al.23 and Dennis et al.24 also corroborate the previous findings and affirm that HVM is safe and effective. Regarding the evaluation of SpO\textsubscript{2} showed an increase after the HVM, which may explain this finding due to the increased area available for gas exchanges35.

Regarding the respiratory mechanics, studies have demonstrated a significant increase in lung compliance after the HVM23,34. Other similar findings were found, attributing this increase in lung compliance due to the fact that the hyperinflation distributes better air flow, resulting in the collapsed lung re-expansion units35. On the other hand, RaW showed no statistically significant variations32.

The dynamics of the inspiratory and expiratory air flow generated by the inspiratory and expiratory adjustments in the mechanical ventilator can contribute substantially in the mucus movement, however this has little relevance in the clinical environment and deserves more recognition. So that the mucus mobilization in the cephalic direction occurs, there must be a predominant expiratory flow. In contrast, the persistent caudal migration can result in clinical consequences, because the relationship PEF/PFI lower than 1.11 favors the secretion displacement to the lungs interior29.

Although it is not always possible to adjust an expiratory flow bias, it seems, at least interesting to seek to avoid or minimize the occurrence of an inspiratory flow bias, with the potential to promote the secretions movement toward inside the lungs. Therefore, some researchers suggest that the flow curves of the mechanical ventilator should also be analyzed/monitored in relation to the flow current in force and its possible action on the pulmonary secretions displacement35-37.

Studies in animals and pulmonary models have demonstrated consistently that the bias of inspiratory or expiratory flow may result in liquid migration of mucus in the direction of the flow bias38-41. Thus, Volpe et al.12, reaffirms that the bias of flow obtained with the fan settings can clear or incorporate the mucus during the mechanical ventilation.

For physiological explanation of the technique HVM, Chaves et al.32, is based on the principle of presence of the Hering-Breuer reflex that allows the use of momentary current volumes higher than those recommended in the literature, generating a more effective expiratory flow peak for the removal of secretions in the airways of intubated and mechanically ventilated patients. The results of this study showed that the HVM increased the expiratory flow without modifying hemodynamic parameters of patients hospitalized in the ICU. Conversely, smaller PFI is resulting from increased inspiratory time and the use of square wave flow37. However, the square wave flow is restricted to volumetric modes.

It is important to remember that the mechanical properties of the respiratory system can exert some influence in the PFI only during the ventilatory modes at pressure37 and depend mainly on the impedance which, in turn, is directly proportional to the airways resistance31. During the pressure modes, the reduction of PFI can be obtained by means of decrease in inspiratory pressure (pressure delta) and by slowing the speed of the inspiratory flow (reduction of rail, slope or rise time - depending on the fan). However, the first adjustment reduces the current volume, which also reduces the PEF, and may annul the effect of inspiratory pressure reduction on the resulting flow bias and can also generate discomfort to the patient. Another unfavorable factor is that in spontaneous ventilation, the patient exercises control over the inspiratory and expiratory flows; therefore, undertakes the maintenance of a cephalic flow bias27.

There is a variety of ventilation modes used for the HVM Dennis et al.24 and Hayes et al.19. However, Thomas31 conducted a limited survey to guide the selection of the HVM settings to optimize their application for the secretions mobilization, analyzing the PFI and PEF generated during the HVM performed in different ventilation modes, in order to provide recommendations to guide the application of the technique. The results suggest that the SIMV-V mode is more successful than the PSV and SIMV-P, by achieving the ratio bias PFI/PEF ≤ 0.9, this being this the main factor in comparison with other modes, generating gradients of desired flows, in addition to gathering a greater proportion of tests with characteristics of ideal flows (PFI/PEF ≤ 0.9 = 80%: PEF -PFI ≥ 5.30 L/min= 47%, PEF ≥ 40L/min = 69% and all the three previous properties= 47% of the samples).

Regarding the PEEP, since the inspired volume is maintained, its setting does not influence the PEF therefrom, with the exception of patients with unstable airways, in which PEEP may result in an increase of the PEF by preventing the collapse of dynamic airways30. When the use of high PEEP and FiO\textsubscript{2} are necessary, the HVM should preferably be used in detriment of the technique of manual hyperinflation Ortiz et al.41 In severe patients, the physiotherapist must monitor the pressures, volumes and flows used during the technique, thus allowing a better adjustment of the same Berney and Deneby42. Beyond the control of ventilatory parameters, especially the mean pressure, current volume and peak pressure, the HVM when used properly is a safe alternative to allow the patients’ maintenance in mechanical ventilation throughout the maneuver, assuring the FiO\textsubscript{2} and PEEP Guimarães and Lemes43 and avoiding the adverse effects of disconnecting the fan, such as the loss of functional residual capacity (FRC), decreased oxygenation and increased shear stress of distal lung units19,44,46. Another factor to be considered is that when performing the HVM the professional assistant prevents the contamination associated with the disconnection of the ventilatory circuit19, as well as reducing the chances of transmissions of infection both for the patient and for the care team20,24.

J Health Sci 2019;21(3):250-4

Gonçalves JSPR, Shimoya-Bittencourt, Santos VM, Belmonte M.
3 Conclusion

HVM in the cephalic flow bias is safe and effective when performed in a thorough and concise way, allowing a cephalic expiratory flow gradient and contributing with the secretion carriage. After the completion of the HVM there was an increase in lung compliance, inferring about the recruitment of previously collapsed areas by atelectasis and/or secretion.

References

16. ANVISA. Segurança do paciente e qualidade em serviços de saúde: critérios diagnósticos de infeção relacionada a assistência a saúde. ANVISA; 2013.
29. Ntoumenopoulos G, Shannon H, Main E. Do commonly used
ventilator settings for mechanically ventilated adults have the potential to embed secretions or promote clearance? Respir Care 2011;56(12):1887-92. doi: 10.4187/respcare.01229.

33. Ntoumenopoulos G, Mucusonthe move: embed it or expel it-the patient, the clinician, and now the ventilator. Respir Care 2008;53(10):1276-9.

