Cytotoxicity and Elemental Release of Dental Acrylic Resin Modified with Silver and Vanadium Based Antimicrobial Nanomaterial

  • Denise Tornavoi de Castro Dental Materials and Prosthesis Departament, Ribeirão Preto School of Dentistry, University of São Paulo
  • Ana Beatriz Vilela Teixeira Dental Materials and Prosthesis Departament, Ribeirão Preto School of Dentistry, University of São Paulo
  • Oswaldo Luiz Alves Laboratory of Solid State Chemistry, Institute of Chemistry, University of Campinas (Unicamp)
  • Andréa Cândido dos Reis Dental Materials and Prosthesis Departament, Ribeirão Preto School of Dentistry, University of São Paulo

Resumo

Abstract
The acrylic resin used for the prosthesis base accumulates biofilm, causing diseases such as stomatitis. The addition of some nanoparticles promotes antimicrobial action. This study incorporated the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) to the acrylic resin by two methods and evaluated the cytotoxicity for human gingival fibroblasts (HGF) and the released silver and vanadium ions. The concentrations of 0.5, 1, 2.5, and 5% of AgVO3 was incorporated by vacuum spatulation and polymeric film. The vacuum spatulation was performed for 60 s using the Turbomix equipment, and the polymeric film was obtained from the polymer solubilization in chloroform, the film was subjected to a cryogenic grinding, and the powder obtained was manually mixed at the monomer. HGF cell viability was assessed after 24 hours, 7 and 14 days by the MTT assay. The release of silver (Ag) and vanadium (V) ions were quantified by inductively coupled plasma mass spectrometry after 30 days. Kruskal-Wallis and Dunn’s test were applied (α = 0.05). The HGF viability was inversely proportional to the incubation time. Both incorporation techniques and the negative and positive control groups presented significant statistical differences (p<0.05). The experimental groups presented no statistical difference compared to the negative control (p>0.05), except the vacuum spatulation group with 5% of AgVO3 that showed greater viability than the negative control (p=0.013) in 24 hours. The release of Ag and V ions was proportional to the concentration of AgVO3 The 5% group presented a significant difference compared to the other groups (p<0.05). In conclusion, the acrylic resin with and without the AgVO3 incorporation had a small cytotoxic potential for HGF in 24 hours, with a lower viability in longer contact times; the release of Ag and V ions was proportional to the concentration of AgVO3, not influencing cell viability.

Keywords: Acrylic Resins. Cell Survival. Nanotechnology. Ions.

Resumo
A resina acrílica utilizada para a base da prótese acumula biofilme, causando doenças como a estomatite. A adição de algumas nanopartículas promove ação antimicrobiana. Este estudo incorporou o vanadato de prata nanoestruturado decorado com nanopartículas de prata (AgVO3) à resina acrílica por dois métodos e avaliou a citotoxicidade para fibroblastos gengivais humanos (HGF) e os íons prata e vanádio liberados. As concentrações de 0,5%, 1%, 2,5% e 5% de AgVO3 foram incorporadas por espatulação a vácuo e filme polimérico. A espatulação a vácuo foi realizada por 60 s no equipamento Turbomix, e o filme polimérico foi obtido a partir da solubilização do polímero em clorofórmio, o filme foi submetido a uma moagem criogênica e o pó obtido foi misturado manualmente ao monômero. A viabilidade celular de HGF foi avaliada após 24 horas, 7 e 14 dias pelo ensaio de MTT. A liberação de íons prata (Ag) e vanádio (V) foi quantificada por espectrometria de massa com plasma indutivamente acoplado após 30 dias. Os testes de Kruskal-Wallis e Dunn foram aplicados (α=0,05). A viabilidade de HGF foi inversamente proporcional ao tempo de incubação. As técnicas de incorporação e os grupos controle negativo e positivo apresentaram diferença estatisticamente significante (p<0,05). Os grupos experimentais não apresentaram diferença estatística em relação ao controle negativo (p>0,05), exceto o grupo de espatulação a vácuo com 5% de AgVO3 que apresentou maior viabilidade que o controle negativo (p = 0,013) em 24 horas. A liberação de íons Ag e V foi proporcional à concentração de AgVO3. O grupo 5% apresentou diferença significativa em relação aos demais grupos (p <0,05). Em conclusão, a resina acrílica com e sem a incorporação de AgVO3 apresentou um pequeno potencial citotóxico para o HGF em 24 horas, com menor viabilidade nos tempos de maior contato, e a liberação de íons Ag e V foi proporcional à concentração de AgVO3, não influenciando na viabilidade celular.

Palavras-chave: Resinas Acrílicas. Sobrevivência Celular. Nanotecnologia. Íons.

Referências

Mirizadeh A, Atai M, Ebrahimi S. Fabrication of denture base materials with antimicrobial properties. J Prosthet Dent 2018;119:292-8. doi: 10.1016/j.prosdent.2017.03.011.

Masetti P, Arbeláez MIA, Pavarina AC, Sanitá PV, Jorge JH. Cytotoxic potential of denture base and reline acrylic resins after immersion in disinfectant solutions. J Prosthet Dent 2018;120:155.e1-7. doi: 10.1016/j.prosdent.2018.01.001.

Compagnoni MA, Pero AC, Ramos SMM, Marra J, Paleari AG, Rodriguez LS. Antimicrobial activity and surface properties of an acrylic resin containing a biocide polymer. Gerodontology 2014;31:220-6. doi: 10.1111/ger.12031.

Sivakumar I, Arunachalam KS, Sajjan S, Ramaraju AV, Rao B, Kamaraj B. Incorporation of Antimicrobial Macromolecules in Acrylic Denture Base Resins: A Research Composition and Update. J Prosthodont 2014;23:284-90. doi: 10.1111/jopr.12105.

Monteiro DR, Gorup LF, Takamiya AS, Camargo ER, Ruvolo-Filho AC, Barbosa DB. Silver Distribution and Release from an Antimicrobial Denture Base Resin Containing Silver Colloidal Nanoparticles. J Prosthodont 2012;21:7-15. doi: 10.1111/j.1532-849X.2011.00772.x.

Regis RR, Zanini AP, Vecchia MPD, Silva-Lovato CH, Paranhos HFO, Souza RF. Physical Properties of an Acrylic Resin after Incorporation of an Antimicrobial Monomer. J Prosthodont 2011;20:372-9. doi: 10.1111/j.1532-849X.2011.00719.x.

Hayran Y, Sarikaya I, Aydin A, Tekin YH. Determination of the effective anticandidal concentration of denture cleanser tablets on some denture base resins. J Appl Oral Sci 2018;26:e20170077. doi: 10.1590/1678-7757-2017-0077.

Procópio ALF, da Silva RA, Maciel JG, Sugio CYC, Soares S, Urban VM, Neppelenbroek KH. Antimicrobial and cytotoxic effects of denture base acrylic resin impregnated with cleaning agents after long-term immersion. Toxicol in Vitro 2018;52:8-13. doi: 10.1016/j.tiv.2018.05.012.

Şuhani MF, Băciuţ G, Băciuţ M, Şuhani R, Bran S. Current perspectives regarding the application and incorporation of silver nanoparticles into dental biomaterials. Clujul Med 2018;91:274-9. doi: 10.15386/cjmed-935.

Ghaffari T, Hamedirad F, Ezzati B. In Vitro Comparison of Compressive and Tensile Strengths of Acrylic Resins Reinforced by Silver Nanoparticles at 2% and 0.2% Concentrations. J Dent Res Dent Clin Dent Prospects 2014;8:204-9. doi: 10.5681/joddd.2014.037.

Paleari AG, Marra J, Pero AC, Rodriguez LS, Ruvolo-Filho A, Compagnoni MA. Effect of incorporation of 2-tert-butylaminoethyl methacrylate on flexural strength of a denture base acrylic resin. J Appl Oral Sci 2011;19:195-9. doi: 10.1590/S1678-77572011000300003.

Kvitek L, Panacek A, Procek R, Soukupova J, Vanickova M, Kolar M, Zboril R. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver. J Phys Conf Ser 2011;304:1-8. doi: 10.1088/1742-6596/304/1/012029.

Holtz RD, Lima BA, Souza-Filho AG, Brocchi M, Alves OL. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed-Nanotechnol 2012;8:935-40. doi: 10.1016/j.nano.2011.11.012.

Castro DT, Valente MLC, Agnelli JAM, Silva CHL, Watanabe E, Siqueira RL, Alves OL, Holtz RD, Reis AC. In vitro study of the antibacterial properties and impact strength of dental acrylic resins modified with a nanomaterial. J Prosthet Dent 2016;115:238-46. doi: 10.1016/j.prosdent.2015.09.003.

Castro DT, Valente MLC, Silva CHL, Watanabe E, Siqueira RL, Schiavon MA, Alves OL, Reis AC. Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles. Arch Oral Biol 2016;67:46-53. doi: 10.1016/j.archoralbio.2016.03.002.

Castro DT, Nascimento C, Alves OL, Santos ES, Agnelli JAM, Reis AC. Analysis of the oral microbiome on the surface of modified dental polymers. Arch Oral Biol 2018;93:107-14. doi: 10.1016/j.archoralbio.2018.06.005.

Ghaffari T, Hamedi-rad F. Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins. J Dent Res Dent Clin Dent Prospects 2015;9:40-3. doi: 10.15171/joddd.2015.008.

International Standard Organization. ISO 10993-5:1992. Biological Evaluation of Medical Devices – Part 5: Tests for in vitro cytotoxicity. Geneva, 2009.

Eren K, Ozmeriç N, Sardaş S. Monitoring of buccal epithelial cells by alkaline comet assay (single cell gel electrophoresis technique) in cytogenetic evaluation of chlorhexidine. Clin Oral Investig 2002;6:150-4. doi: 10.1007/s00784-002-0168-1.

Hidalgo E, Bartolome R, Dominguez C. Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness. Chem-Biol Interact 2002;139:265-82. doi: 10.1016/S0009-2797(02)00003-0.

Arabaci T, Türkez H, Çanakçi CF, Özgöz M. Assessment of cytogenetic and cytotoxic effects of chlorhexidine digluconate on cultured human lymphocytes. ‎Acta Odontol Scand 2013;71:1255-60. doi: 10.3109/00016357.2012.757646.

Hidalgo E, Dominguez C. Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol in Vitro 2001;15:271-6. doi: 10.1016/S0887-2333(01)00020-0.

Artal MC, Holtz RD, Kummrow F, Alves OL, Umbuzeiro GA. The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis. Environ Toxicol Chem 2013;32:908-12. doi: 10.1002/etc.2128.

Rodriguez LS, Paleari AG, Giro G, Oliveira-Junior NM, Pero AC, Compagnoni MA. Chemical Characterization and Flexural Strength of a Denture Base Acrylic Resin with Monomer 2-Tert-Butylaminoethyl Methacrylate. J Prosthodont 2013;22:292-7. doi: 10.1111/j.1532-849X.2012.00942.x.

Publicado
2021-03-18
Seção
Artigos