In Vitro Effect of Low-Level Laser Therapy on Undifferentiated Mouse Pulp Cells

  • Daniela Thomazatti Chimello-Sousa
  • Karina Fittipaldi Bombonato-Prado
  • Adalberto Luiz Rosa
  • Roger Rodrigo Fernandes
  • Luciano Bachmann
  • Selma Siéssere
  • Marcelo Palinkas
  • Geovane Praxedes Lavez
  • Simone Cecilio Hallak Regalo


Low-level laser therapy has been investigated as a possible stimulus for enhancement of proliferation and differentiation of various cell types, but few reports relate undifferentiated mouse pulp cells (OD-21) response to irradiation in in vitro models. The aim of this study was to analyze the influence of low-level laser therapy (λ=660 nm), with three different irradiation times, on the behavior of OD-21 cell line. The cells were cultivated and divided into three groups: non-irradiated/control (group I); irradiated with 88 s (group II); irradiated with 177 s (group III) and irradiated with 265 s (group IV). Cell growth and viability were assessed after 7 and 10 days. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=.05). At day 7, there was a higher cell growth in groups I and II, as compared to group IV (p<.01). At the 10th day, group I showed a higher cell growth as compared to group II (p<.05). Cell viability in group IV was significantly lower at the 7th day, as compared to groups I (p<.001), II (p<.01) and III (p<.001). Cell viability in all the groups was over 80%, except in group IV at day 7. Irradiation time of group I influenced positively the proliferation and viability of OD-21 cells in late cell culture period.

Keywords: Low-Level Laser Therapy. Cell Culture. Stem Cells.

A terapia a laser de baixa intensidade tem sido investigada como possível estímulo para aumento da proliferação e diferenciação de vários tipos de células, mas poucos relatos relacionam a resposta de células indiferenciadas da polpa dentária de camundongos (OD-21) à irradiação em modelos in vitro. O objetivo deste estudo foi analisar a influência do laser de baixa intensidade (λ=660 nm), com três períodos de irradiação diferentes, no comportamento das células da linhagem OD-21. As células foram cultivadas e distribuídas em três grupos: não irradiado / controle (grupo I); irradiado com 88 s (grupo II); irradiado com 177 s (grupo III) e irradiado com 265 s (grupo IV). O crescimento e a viabilidade celular foram avaliados após 7 e 10 dias. Os dados foram analisados pelos testes de Kruskal-Wallis e Mann-Whitney (α = 0,05). No dia 7, houve crescimento celular maior nos grupos I e II, em comparação ao grupo IV (p <0,01). No décimo dia, o grupo I apresentou crescimento celular superior ao grupo II (p <0,05). A viabilidade celular no grupo IV foi significativamente menor no sétimo dia, em comparação aos grupos I (p <0,001), II (p <0,01) e III (p <0,001). A viabilidade celular em todos os grupos foi superior a 80%, exceto no grupo IV no dia 7. O tempo de irradiação do grupo I influenciou positivamente a proliferação e a viabilidade das células OD-21 no período mais tardio da cultura celular.

Palavras-chave: Laserterapia de Baixa Intensidade. Cultura Celular. Células Tronco.


Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726-36. doi: 10.1038/nri2395

Atiya H, Frisbie L, Pressimone C, Coffman L. Mesenchymal Stem Cells in the Tumor Microenvironment. Adv Exp Med Biol. 2020;1234:31-42. doi: 10.1007/978-3-030-37184-5_3

Eduardo, F. de P., Bueno, D.F., de Freitas, P.M., et al. (2008). Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers Surg. Med. 40, 433-38. doi: 10.1002/lsm.20646

Caruso S, Sgolastra F, Gatto R. Dental pulp regeneration in paediatric dentistry: the role of stem cells. Eur J Paediatr Dent. 2014;15(2):90-4.

Shah D, Lynd T, Ho D, Chen J, Vines J, Jung HD, Kim JH, Zhang P, Wu H, Jun HW, Cheon K. Pulp-Dentin Tissue Healing Response: A Discussion of Current Biomedical Approaches. J Clin Med. 2020;9(2). pii: E434. doi: 10.3390/jcm9020434

Zanini M, Sautier JM, Berdal A, Simon S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod. 2012;38(9):1220-6. doi: 10.1016/j.joen.2012.04.018

Hanks CT, Fang D, Sun Z, Edwards CA, Butler WT. Dentin-specific proteins in MDPC-23 cell line. Eur J Oral Sci. 1998;106 Suppl 1:260-6

Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. Am J Surg. 1971;122(4):532-5.

Ferriello V, Faria MR, Cavalcanti BN. The effects of low-level diode laser treatment and dental pulp-capping materials on the proliferation of L-929 fibroblasts. J Oral Sci. 2010;52(1):33-8.

Yin K, Zhu R, Wang S, Zhao RC. Low-Level Laser Effect on Proliferation, Migration, and Antiapoptosis of Mesenchymal Stem Cells. Stem Cells Dev. 2017;26(10):762-75. doi: 10.1089/scd.2016.0332

Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther. 2020. doi: 10.2174/1574888X15666200204123722

Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose Response. 2011;9(4):602-18. doi: 10.2203/dose-response.11-009.Hamblin

Kiro NE, Hamblin MR, Abrahamse H. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation. Tumour Biol. 2017 ;39(6):1010428317706913. doi: 10.1177/1010428317706913

Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16:4. doi: 10.1186/1423-0127-16-4

Hawkins DH, Abrahamse H. The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation. Lasers Surg Med. 2006;38(1):74-83

Haxsen V, Schikora D, Sommer U, Remppis A, Greten J, Kasperk C. Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures. Lasers Med Sci. 2008;23(4):381-4.

Azevedo LH, de Paula Eduardo F, Moreira MS, de Paula Eduardo C, Marques MM. Influence of different power densities of LILT on cultured human fibroblast growth : a pilot study. Lasers Med Sci. 2006;21(2):86-9.

Semeghini MS, Fernandes RR, Chimello DT, de Oliveira FS, Bombonato-Prado KF. In vitro evaluation of the odontogenic potential of mouse undifferentiated pulp cells. Braz Dent J. 2012;23(4):328-36.

Musson DS, McLachlan JL, Sloan AJ, Smith AJ, Cooper PR. Adrenomedullin is expressed during rodent dental tissue development and promotes cell growth and mineralization. Biol Cell. 2010;102(3):145-57. doi: 10.1042/BC20090122

Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts--an in vitro study. Lasers Med Sci. 2012;27(2):423-30. doi: 10.1007/s10103-011-0930-1

Bayat M, Jalalifirouzkouhi A. Presenting a Method to Improve Bone Quality Through Stimulation of Osteoporotic Mesenchymal Stem Cells by Low-Level Laser Therapy. Photomed Laser Surg. 2017;35(11):622-28. doi: 10.1089/pho.2016.4245

Pereira LB, Chimello DT, Ferreira MR, Bachmann L, Rosa AL, Bombonato-Prado KF. Low-level laser therapy influences mouse odontoblast-like cell response in vitro. Photomed Laser Surg. 2012;30(4):206-13. doi: 10.1089/pho.2011.3087

Nogueira GT, Mesquita-Ferrari RA, Souza NH, Artilheiro PP, Albertini R, Bussadori SK, Fernandes KP. Effect of low-level laser therapy on proliferation, differentiation, and adhesion of steroid-treated osteoblasts. Lasers Med Sci. 2012 ;27(6):1189-93. doi: 10.1007/s10103-011-1035-6

Bellesini LS, Beloti MM, Crippa GE, Bombonato-Prado KF, Junta CM, Marques MM, Passos GA, Rosa AL. The effect of TAK-778 on gene expression of osteoblastic cells is mediated through estrogen receptor. Exp Biol Med (Maywood). 2009;234(2):190-9. doi: 10.3181/0808-RM-246

Andreeff, M., Goodrich, D.W., and Pardee, A.B. (2000). Cell proliferation, differentiation, and apoptosis, in: Holland-Frei Cancer Medicine. R.C. Bast, D.W. Kufe, R.E. Pollock, R.R. Weichselbaum, J.F. Holland, and E. Frei (eds.). Hamilton: BC Decker, chapter 2.

Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F. In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med. 2009;41(6):463-9. doi: 10.1002/lsm.20791

Castilho-Fernandes A, Lopes TG, Ferreira FU, Rezende N, Silva VF, Primo FL, Fontes AM, Ribeiro-Silva A, Tedesco AC. Adipogenic differentiation of murine bone marrow mesenchymal stem cells induced by visible light via photo- induced biomodulation. Photodiagnosis Photodyn Ther. 2019;25:119-27. doi: 10.1016/j.pdpdt.2018.11.013

Incerti Parenti S, Panseri S, Gracco A, Sandri M, Tampieri A, Alessandri Bonetti G. Effect of low-level laser irradiation on osteoblast-like cells cultured on porous hydroxyapatite scaffolds. Ann Ist Super Sanita. 2013;49(3):255-60. doi: 10.4415/ANN_13_03_04